Variable Stars - Eruptive
Hills Observatory: 1 January 2013 to 26 May 2020
Eruptive variables are stars varying in brightness because of violent processes and flares occurring in their chromospheres and coronae. The light changes are usually accompanied by shell events or mass outflow in the form of stellar winds of variable intensity and/or by interaction with the surrounding interstellar medium. This class includes the following types: FU Orion variables of the FU Orionis type. Characterized by gradual increases in brightness by about 6 mag in several months, followed by either almost complete constancy at maximum that is sustained for long periods of time or slow decline by 1-2 mag. Spectral types at maximum are in the range Ae(alpha) - Gpe(alpha). After an outburst, a gradual development of an emission spectrum is observed and the spectral type becomes later. These variables probably mark one of the evolutionary stages of T Tauri-type Orion variables (INT), as evidenced by an outburst of one member, V1057 Cyg, but its decline (2.5 mag in 11 years) commenced immediately after maximum brightness was attained. All presently known FU Ori variables are coupled with reflecting cometary nebulae. GCAS Eruptive irregular variables of the Gamma Cas type. These are rapidly rotating B III-IVe stars with mass outflow from their equatorial zones. The formation of equatorial rings or disks is often accompanied by temporary fading. Light amplitudes may reach 1.5 mag in V. I Poorly studied irregular variables with unknown features of light variations and spectral types. This is a very inhomogeneous group of objects. IA Poorly studied irregular variables of early (O-A) spectral type. IB Poorly studied irregular variables of intermediate (F-G) to late (K-M) spectral type. IN Orion variables. Irregular, eruptive variables connected with bright or dark diffuse nebulae or observed in the regions of these nebulae. Some of them may show cyclic light variations caused by axial rotation. In the Spectrum-Luminosity diagram, they are found in the area of the main sequence and subgiants. They are probably young objects that, during the course of further evolution, will become light-constant stars on the zero-age main sequence (ZAMS). The range of brightness variations may reach several magnitudes. In the case of rapid light variations having been observed (up to 1 mag in 1-10 days), the letter "S" is added to the symbol for the type (INS). This type may be divided into the following subtypes: INA Orion variables of early spectral types (B-A or Ae). They are often characterized by occasional abrupt Algol-like fadings (T Ori); INB Orion variables of intermediate and late spectral types, F-M or Fe-Me (BH Cep, AH Ori). F-type stars may show Algol-like fadings similar to those of many INA stars; K-M stars may produce flares along with irregular light variations; INT Orion variables of the T Tauri type. Stars are assigned to this type on the basis of the following (purely spectroscopic) criteria: spectral types are in the range Fe-Me. The spectra of most typical stars resemble the spectrum of the solar chromosphere. The feature specific to the type is the presence of the flourescent emission lines Fe II 4046, 4132 A (anomalously intense in the spectra of these stars), emission lines [Si II] and [O I], as well as the absorption line Li I 6707 A. These variables are usually observed only in diffuse nebulae. If it is not apparent that the star is associated with a nebula, the letter "N" in the symbol for the type may be omitted, e.g., IT (RW AUR); IN(YY) Some Orion variables (YY Ori) show the presence of absorption components on the redward sides of emission lines, indicating the infall of matter toward the stars' surfaces. In such cases, the symbol for the type may be accompanied by the symbol "YY". IS Rapid irregular variables having no apparent connection with diffuse nebulae and showing light changes of about 0.5 - 1.0 mag within several hours or days. There is no strict boundary between rapid irregular and Orion variables. If a rapid irregular star is observed in the region of a diffuse nebula, it is considered an Orion variable and designated by the symbol INS. To attribute a variable to the IS type, it is necessary to take much care to be certain that its light changes are really not periodic. Quite a number of the stars assigned to this type in the third edition of the GCVS turned out to be eclipsing binary systems, RR Lyrae variables, and even extragalactic BL Lac objects. ISA Rapid irregular variables of the early spectral types, B-A or Ae; ISB Rapid irregular variables of the intermediate and late spectral types, F-M and Fe-Me. RCB Variables of the R Coronae Borealis type. These are hydrogen-poor, carbon- and helium-rich, high-luminosity stars belonging to the spectral types Bpe-R, which are simultaneously eruptive and pulsating variables. They show slow nonperiodic fadings by 1-9 mag in V lasting from a month or more to several hundred days. These changes are superposed on cyclic pulsations with amplitudes up to several tenths of a magnitude and periods in the range 30-100 days. RS Eruptive variables of the RS Canum Venaticorum type. This type is ascribed to close binary systems with spectra showing Ca II H and K in emission, their components having enhanced chromospheric activity that causes quasi-periodic light variability. The period of variation is close to the orbital one, and the variability amplitude is usually as great as 0.2 mag in V (UX Ari). They are X-ray sources and rotating variables. RS CVn itself is also an eclipsing system (see below). SDOR Variables of the S Doradus type. These are eruptive, high-luminosity Bpec- Fpec stars showing irregular (sometimes cyclic) light changes with amplitudes in the range 1-7 mag in V. They belong to the brightest blue stars of their parent galaxies. As a rule, these stars are connected with diffuse nebulae and surrounded by expanding envelopes (P Cyg, Eta Car). UV Eruptive variables of the UV Ceti type, these are K Ve-M Ve stars sometimes displaying flare activity with amplitudes from several tenths of a magnitude up to 6 mag in V. The amplitude is considerably greater in the ultraviolet spectral region. Maximum light is attained in several seconds or dozens of seconds after the beginning of a flare; the star returns to its normal brightness in several minutes or dozens of minutes. UVN Flaring Orion variables of spectral types Ke-Me. These are phenomenologically almost identical to UV Cet variables observed in the solar neighborhood. In addition to being related to nebulae, they are normally characterized by being of earlier spectral type and greater luminosity, with slower development of flares (V389 Ori). They are possibly a specific subgroup of INB variables with irregular variations superimposed by flares. WR Eruptive Wolf-Rayet variables. Stars with broad emission features of He I and HE II as well as C II-C IV, O II-O IV, and N III-N V. They display irregular light changes with amplitudes up to 0.1 mag in V, which are probably caused by physical processes, in particular, by nonstable mass outflow from their atmospheres.