Variable Stars - SDSS J103533.03+055158.4
Type U Geminorum-type Eclipsing binary systems U Geminorum-type variables, quite often called dwarf novae. They are close binary systems consisting of a dwarf or subgiant K-M star that fills the volume of its inner Roche lobe and a white dwarf surrounded by an accretion disk. Orbital periods are in the range 0.05-0.5 days. Usually only small, in some cases rapid, light fluctuations are observed, but from time to time the brightness of a system increases rapidly by several magnitudes and, after an interval of from several days to a month or more, returns to the original state. Intervals between two consecutive outbursts for a given star may vary greatly, but every star is characterized by a certain mean value of these intervals, i.e., a mean cycle that corresponds to the mean light amplitude. The longer the cycle, the greater the amplitude. These systems are frequently sources of X-ray emission. The spectrum of a system at minimum is continuous, with broad H and He emission lines. At maximum these lines almost disappear or become shallow absorption lines. Some of these systems are eclipsing, possibly indicating that the primary minimum is caused by the eclipse of a hot spot that originates in the accretion disk from the infall of a gaseous stream from the K-M star. According to the characteristics of the light changes, U Gem variables may be subdivided into three types: SS Cyg-type (UGSS), SU UMa-type (UGSU), and Z Cam-type (UGZ). Eclipsing binary systems. These are binary systems with orbital planes so close to the observer's line of sight (the inclination of the orbital plane to the plane orthogonal to the line of sight is close to 90 deg.) that the components periodically eclipse each other. Consequently, the observer finds changes of the apparent combined brightness of the system with the period coincident with that of the components' orbital motion. AAVSO Alert 326/471: September 20, 2012  Drs. Boris Gaensicke (Warwick University), Joseph Patterson (Columbia University, Center for Backyard Astrophysics), and Arne Henden (AAVSO), on behalf of a consortium of 16 astronomers, have requested the help of AAVSO observers in monitoring the ~40 cataclysmic variables in the table below in support of Hubble Space Telescope observations in the coming months. The HST COS (Cosmic Origins Spectrograph) will be carrying out far-ultraviolet spectroscopy of ~40 CVs sequentially, with the aim to measure the temperatures, atmospheric compositions, rotation rates, and eventually masses of their white dwarfs. The primary purpose of the monitoring is to know whether each target is in quiescence immediately prior to the observation window; if it is in outburst it will be too bright for the HST instrumentation. Based on the information supplied by the AAVSO the HST scheduling team will make the decision (usually) the evening before the scheduled observing time as to whether to go forward with the HST observations.
Hills Observatory: 1 January 2013 to 2 December 2018
COMETS COMETS
DEEP SKY DEEP SKY